bezier-easing.js 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. /**
  2. * https://github.com/gre/bezier-easing
  3. * BezierEasing - use bezier curve for transition easing function
  4. * by Gaëtan Renaudeau 2014 - 2015 – MIT License
  5. *
  6. * https://github.com/manubb/Leaflet.PixiOverlay
  7. */
  8. (function(f) {
  9. if (typeof exports === 'object' && typeof module !== 'undefined') {
  10. module.exports = f();
  11. } else if (typeof define === 'function' && define.amd) {
  12. define([], f);
  13. } else {
  14. var g;
  15. if (typeof window !== 'undefined') {
  16. g = window;
  17. } else if (typeof global !== 'undefined') {
  18. g = global;
  19. } else if (typeof self !== 'undefined') {
  20. g = self;
  21. } else {
  22. g = this;
  23. }
  24. g.BezierEasing = f();
  25. }
  26. })(function() {
  27. var define, module, exports;
  28. return (function() {
  29. function r(e, n, t) {
  30. function o(i, f) {
  31. if (!n[i]) {
  32. if (!e[i]) {
  33. var c = 'function' == typeof require && require;
  34. if (!f && c) return c(i, !0);
  35. if (u) return u(i, !0);
  36. var a = new Error("Cannot find module '" + i + "'");
  37. throw ((a.code = 'MODULE_NOT_FOUND'), a);
  38. }
  39. var p = (n[i] = { exports: {} });
  40. e[i][0].call(
  41. p.exports,
  42. function(r) {
  43. var n = e[i][1][r];
  44. return o(n || r);
  45. },
  46. p,
  47. p.exports,
  48. r,
  49. e,
  50. n,
  51. t
  52. );
  53. }
  54. return n[i].exports;
  55. }
  56. for (var u = 'function' == typeof require && require, i = 0; i < t.length; i++) o(t[i]);
  57. return o;
  58. }
  59. return r;
  60. })()(
  61. {
  62. 1: [
  63. function(require, module, exports) {
  64. /**
  65. * https://github.com/gre/bezier-easing
  66. * BezierEasing - use bezier curve for transition easing function
  67. * by Gaëtan Renaudeau 2014 - 2015 – MIT License
  68. */
  69. // These values are established by empiricism with tests (tradeoff: performance VS precision)
  70. var NEWTON_ITERATIONS = 4;
  71. var NEWTON_MIN_SLOPE = 0.001;
  72. var SUBDIVISION_PRECISION = 0.0000001;
  73. var SUBDIVISION_MAX_ITERATIONS = 10;
  74. var kSplineTableSize = 11;
  75. var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
  76. var float32ArraySupported = typeof Float32Array === 'function';
  77. function A(aA1, aA2) {
  78. return 1.0 - 3.0 * aA2 + 3.0 * aA1;
  79. }
  80. function B(aA1, aA2) {
  81. return 3.0 * aA2 - 6.0 * aA1;
  82. }
  83. function C(aA1) {
  84. return 3.0 * aA1;
  85. }
  86. // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
  87. function calcBezier(aT, aA1, aA2) {
  88. return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
  89. }
  90. // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
  91. function getSlope(aT, aA1, aA2) {
  92. return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
  93. }
  94. function binarySubdivide(aX, aA, aB, mX1, mX2) {
  95. var currentX,
  96. currentT,
  97. i = 0;
  98. do {
  99. currentT = aA + (aB - aA) / 2.0;
  100. currentX = calcBezier(currentT, mX1, mX2) - aX;
  101. if (currentX > 0.0) {
  102. aB = currentT;
  103. } else {
  104. aA = currentT;
  105. }
  106. } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
  107. return currentT;
  108. }
  109. function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) {
  110. for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
  111. var currentSlope = getSlope(aGuessT, mX1, mX2);
  112. if (currentSlope === 0.0) {
  113. return aGuessT;
  114. }
  115. var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
  116. aGuessT -= currentX / currentSlope;
  117. }
  118. return aGuessT;
  119. }
  120. function LinearEasing(x) {
  121. return x;
  122. }
  123. module.exports = function bezier(mX1, mY1, mX2, mY2) {
  124. if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) {
  125. throw new Error('bezier x values must be in [0, 1] range');
  126. }
  127. if (mX1 === mY1 && mX2 === mY2) {
  128. return LinearEasing;
  129. }
  130. // Precompute samples table
  131. var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
  132. for (var i = 0; i < kSplineTableSize; ++i) {
  133. sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
  134. }
  135. function getTForX(aX) {
  136. var intervalStart = 0.0;
  137. var currentSample = 1;
  138. var lastSample = kSplineTableSize - 1;
  139. for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
  140. intervalStart += kSampleStepSize;
  141. }
  142. --currentSample;
  143. // Interpolate to provide an initial guess for t
  144. var dist =
  145. (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
  146. var guessForT = intervalStart + dist * kSampleStepSize;
  147. var initialSlope = getSlope(guessForT, mX1, mX2);
  148. if (initialSlope >= NEWTON_MIN_SLOPE) {
  149. return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
  150. } else if (initialSlope === 0.0) {
  151. return guessForT;
  152. } else {
  153. return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
  154. }
  155. }
  156. return function BezierEasing(x) {
  157. // Because JavaScript number are imprecise, we should guarantee the extremes are right.
  158. if (x === 0) {
  159. return 0;
  160. }
  161. if (x === 1) {
  162. return 1;
  163. }
  164. return calcBezier(getTForX(x), mY1, mY2);
  165. };
  166. };
  167. },
  168. {}
  169. ]
  170. },
  171. {},
  172. [1]
  173. )(1);
  174. });